Iterative scheme for computing exactly the total field propagating in dielectric structures of arbitrary shape
نویسنده
چکیده
We present a new approach to the computation of an electrical field propagating in a dielectric structure. We use the Green's-function technique to compute an exact solution of the wave equation. No paraxial approximation is made, and our method can handle any kind of dielectric medium (air, semiconductor, metal, etc.). An original iterative numerical scheme based on the parallel use of Lippman-Schwinger and Dyson's equations is demonstrated. The influence of the numerical parameters on the accuracy of the results is studied in detail, and the high precision and stability of the method are assessed. Examples for one and two dimensions establish the versatility of the method and its ability to handle structures of arbitrary shape. The application of the method to the computation of eigenmode spectra for dielectric structures is illustrated.
منابع مشابه
An Enhanced MSS-based checkpointing Scheme for Mobile Computing Environment
Mobile computing systems are made up of different components among which Mobile Support Stations (MSSs) play a key role. This paper proposes an efficient MSS-based non-blocking coordinated checkpointing scheme for mobile computing environment. In the scheme suggested nearly all aspects of checkpointing and their related overheads are forwarded to the MSSs and as a result the workload of Mobile ...
متن کاملComputing the Matrix Geometric Mean of Two HPD Matrices: A Stable Iterative Method
A new iteration scheme for computing the sign of a matrix which has no pure imaginary eigenvalues is presented. Then, by applying a well-known identity in matrix functions theory, an algorithm for computing the geometric mean of two Hermitian positive definite matrices is constructed. Moreover, another efficient algorithm for this purpose is derived free from the computation of principal matrix...
متن کاملSolving systems of nonlinear equations using decomposition technique
A systematic way is presented for the construction of multi-step iterative method with frozen Jacobian. The inclusion of an auxiliary function is discussed. The presented analysis shows that how to incorporate auxiliary function in a way that we can keep the order of convergence and computational cost of Newton multi-step method. The auxiliary function provides us the way to overcome the singul...
متن کاملFDTD Analysis of Top-Hat Monopole Antennas Loaded with Radially Layered Dielectric
Top-hat monopole antennas loaded with radially layered dielectric are analyzed using the finite-difference time-domain (FDTD) method. Unlike the mode-matching method (MMM) (which was previously used for analyzing these antennas) the FDTD method enables us to study such structures accurately and easily. Using this method, results can be obtained in a wide frequency band by performing only one ti...
متن کاملAn iterative, fast, linear-scaling method for computing induced charges on arbitrary dielectric boundaries.
Simulating coarse-grained models of charged soft-condensed matter systems in presence of dielectric discontinuities between different media requires an efficient calculation of polarization effects. This is almost always the case if implicit solvent models are used near interfaces or large macromolecules. We present a fast and accurate method (ICC( small star, filled)) that allows to simulate t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002